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The infestation of stored food grains by insect pests poses an important threat to global 

food security and economic stability. The loss of stored food grains may be due to insect 

pest infestation, microbial spoilage, or inadequate storage conditions. Among these losses, 

insect pest infestations cause major losses in stored food commodities. Therefore, early 

detection of storage pests is highly important to farmers and warehouse managers/owners. 

Conventional detection methods such as visual/manual inspection, grain probes and insect 

traps, pheromones, visual lures, and berlese funnel methods are time-consuming and 

destructive methods. As conventional detection requires repeated sampling and 

monitoring, the insect pests can be detected only after the adult emergence. At present, 

non-destructive methods, viz., improved and advanced techniques such as hidden 

infestation detectors, NIR, X-ray imaging, uric acid analysis, microwave resonators, 

conductive roller mills, ELISA, acoustic detection, environmental sensing, electronic-nose 

methods, thermal imaging, solid-phase microextraction (SPME), and machine vision are 

explored for their potential in enhancing the efficiency and scalability of detection 

systems. The advantages and limitations of each method are critically assessed, 

considering factors such as accuracy, cost-effectiveness, and applicability in storage 

environments. The present review explores various improved and advanced detection 

techniques employed in the monitoring of insect pests in stored food commodities. 
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Introduction 

 

Agriculture is the key component of 

livelihoods, and directly affects 19% of the world’s 

population. Observations and projections indicate 

that by 2050, the world's population will reach 

approximately nine billion (Parfitt et al., 2010; Duro 

et al., 2020). Food loss refers to a decrease in the 

quantity or quality of food intended for human 

consumption, occurring at various stages in the 

supply chain. This loss can result from factors such as 

spoilage, damage, contamination, or inefficiencies in 

handling, transportation, and storage, leading to a 

reduction in the amount of food available for 

consumption. Food loss contributes to resource waste 

and economic losses, and poses challenges in 

addressing global food security and sustainability 

(Spang et al., 2019; Keerthana et al., 2025). The 

majority of the anticipated rise in population growth 

is expected to occur in developing nations, many of 

which are already experiencing starvation and 

malnutrition. The escalating factors of climate change 

and urbanisation further exacerbate concerns about 

the rising demand for food. Over the past few 

decades, many countries have prioritised enhancing 

agricultural production, changing land use patterns, 

and implementing population control measures to 

address the growing food demand (Kumar and Kalita, 

2017). Owing to these fluctuations in the population, 

there is a strong need to increase the food production 

rate by 60 - 70% to fulfil the growing demands of the 

world's growing population. The production of crops 

in agriculture is hampered by various abiotic and 

biotic factors. Biotic factors include insects, weeds, 
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pathogens, and other nematodes. They cause 

approximately 20 - 40% crop loss. It is estimated that 

only 18 - 20% of the crops produced worldwide are 

destroyed by insects, which leads to quantitative and 

qualitative food loss (FAO, 2019). Approximately, 

33% of the globally produced food, equivalent to 

approximately 1.3 billion tons and valued at 

approximately US $1 trillion, is lost each year during 

postharvest operations. 

Addressing postharvest losses (PHL) is 

essential for improving food security, reducing waste, 

and enhancing the efficiency of the food supply chain 

(Bendinelli et al., 2020). The PHL remains a critical 

concern, as in field and storage godowns. Globally, it 

is quite common for plants to experience PHL of 

grains ranging from 10 - 15% (Hassan et al., 2023). 

In India, the storage loss of cereals is estimated to be 

approximately 0.75 to 1.21%, and for pulses and 

oilseeds, it varies from 1.18 to 1.67% and 0.22 to 

1.61%, respectively (Ahmad et al., 2021). Stored 

grain insect pests pose a major threat to food security 

and economic stability. In food grain storage, insect 

infestations result in quantitative and qualitative 

losses, diminishing the overall value of the food 

grain. Storage grain pests not only feed on stored food 

grains, but also introduce contaminants in the form of 

their metabolic wastes and their body parts. The 

metabolic activities of insects generate heat and 

moisture, accelerating the growth of microorganisms, 

and creating hotspot areas within stored grains. 

Grains heavily affected by insect infestations become 

unsuitable for seeding purposes, and their derived 

metabolites make food grains unfit for human 

consumption (Srivastava and Mishra, 2021). 

Various techniques have been employed for 

identifying insects in grains, including conventional 

approaches such as visual examination, grain probes 

and insect traps (Mohan and Fields, 2002; Mohan and 

Rajesh, 2016), visual lures, pheromones, pitfall traps, 

and the berlese funnel method. However, many of 

these detection techniques exhibit limitations, 

including destructiveness, inaccuracy, time-intensive 

processes, and an inability to discern internal insect 

infestations. Internal insect infestations can also be 

detected by improved and advanced technologies, viz. 

hidden infestation detectors, X-ray analysis 

(Karunakaran et al., 2004b), near-infrared reflectance 

(NIR) analysis (Crépon et al., 2023), uric acid 

analysis (Liu et al., 2022), immunoassay biochemical 

tests, microwave resonators, conductive roller mills 

(Brabec et al., 2023), and in recent years, sensor-

based detection systems (Eliopoulos et al., 2015; 

Njoroge et al., 2019; Mankin et al., 2021), E-noses 

(Zhou et al., 2021), solid-phase microextraction 

methods, machine vision (Liu and Chahl, 2018), and 

environmental sensing have emerged as promising 

tools to increase the precision, efficiency, and 

timeliness of identifying stored-grain insect pests. 

Monitoring stored food grains helps to track 

insect population trends, developmental stages, and 

infestation levels over time. The present review 

provides insights into insect activity in relation to 

environmental conditions, and can be used to evaluate 

the effectiveness of pest management strategies. 

These efforts underscore the importance of improved 

and advanced detection technologies by linking to 

and monitoring broader food security goals. To 

minimise losses and ensure safe storage for 

sustainable agricultural production, it is essential to 

develop improved and advanced methods for 

detecting insect infestations with increased 

sensitivity. Therefore, the present review aims to 

provide a thorough summary of improved and 

advanced techniques for detecting insects in stored 

food grains, emphasising their potential to enhance 

food security and sustainability. 

 

Methods of detecting stored-grain pest infestations 

Stored insect pests pose a significant threat to 

agricultural produce, stored food grains, and 

processed foods, causing substantial economic losses 

and health risks (Hamel et al., 2020). Timely and 

accurate detection of infestations is crucial for 

implementing effective pest management strategies. 

Various methods are employed to monitor stored 

insect pests and mitigate their impact on stored food 

grains. 

 

Improved methods for detection of stored-grain pests 

Detection of insects on basis of density 

Hidden infestation detector 

Hidden infestation detectors are innovative 

tools designed to identify and monitor pest activity 

within stored grain without extensive visual/manual 

inspection. It comprises of three stacked circular 

plates, with the upper and middle plates being 

determined to facilitate easy operation when lifted. 

The base plate was equipped with filter paper treated 

with ninhydrin. Samples of grains with a moisture 

level of approximately 20% were placed into the 

holes in the middle plate. These grains were crushed 

by pressing on the top plate, and colour changes in the 
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infested grains were observed (Banga et al., 2018). A 

detector was used to test sorghum affected by 

Sitophilus oryzae, wheat infested with the 

Angoumois grain moth Sitotroga cerealella, and 

green gram harbouring the pulse beetle, 

Callosobruchus maculatus (Jamshidi et al., 2019). 

 

Uric acid analysis 

Insects that thrive in environments with limited 

moisture, such as stored product insects, eliminate 

uric acid as the final by-product of their nitrogen 

metabolism (Das et al., 2021). Uric acid, a key 

component found in the excrement of insects, has 

been suggested as a marker for identifying insect 

infestations in stored food grains. This approach 

indirectly identifies insect infestations throughout the 

storage period (Rajendran, 2005). Various techniques 

have been developed for assessing uric acid levels, 

including gas-liquid chromatography (GLC), paper 

chromatography, colorimetry, fluorometry, high-

performance liquid chromatography (HPLC), thin-

layer chromatography (TLC), and enzymatic methods 

(Banga et al., 2018). Using HPLC, uric acid 

estimation was performed in Sitophilus granarius, 

Rhyzopertha dominica (Zakladnoy et al., 2022), and 

S. oryzae (Zakladnoy and Yaitskikh, 2020), and uric 

acid analysis of Triboliuum castaneum was 

performed via the enzymatic UV method. Uric acid 

analysis was performed via high-performance liquid 

chromatography-diode array detection (HPLC-DAD) 

in cereals and pulses infested by stored-product 

insects (Das et al., 2021). According to the Bureau of 

Indian Standards (BIS, 1970), the colorimetric 

approach is suitable for measuring uric acid to 

ascertain the extent of infestation. 

 

Detection of insects using non-imaging method 

Near-infrared (NIR) reflectance spectroscopy 

Near-infrared (NIR) spectroscopy has emerged 

as a quick, dependable, precise, and cost-effective 

method used for analysing the composition of grains 

(Losel et al., 2024), whereas classical NIR absorption 

spectroscopy enables the determination of 

concentrations of components such as water, 

carbohydrates, fats, and proteins (Shi et al., 2024). 

The principle involved in NIR spectroscopy is the 

interaction between NIR light and a sample. The NIR 

relies on the absorption of electromagnetic 

wavelengths ranging between 780 and 2,500 nm 

(Adedeji et al., 2020). This technique relies on the 

absorption, reflection, and transmission of NIR light 

by a sample, providing valuable information about 

the molecular structure and composition of the food 

grain sample. By examining the unique spectral 

patterns in the NIR region, NIR spectroscopy allows 

for the identification and quantification of various 

components within a sample, making it a versatile and 

widely utilised analytical tool in the field of 

agriculture (Johnson, 2020). An automated NIR 

spectroscopy system with wavelengths ranging from 

400 to 1700 nm was used, and the larvae and pupae 

of rice weevil S. oryzae were observed with accuracy 

ranging between 92 and 93% (Maghirang et al., 

2003). The Indian meal moth, Plodia interpunctella, 

which infest stored rice commodities, was detected 

via NIR spectroscopy. SIMCA and PLS-DA have 

been used as classification methods to distinguish 

stored rice products from infested and uninfested P. 

interpunctella. The classification rate was 95.6% for 

uninfested samples, and 95% for infested samples 

when PLS-DA classifiers were used, whereas when 

SIMCA classification was used, it was 97% for 

infested samples, and highly sensitive for uninfested 

samples (Biancolillo et al., 2019). The Fourier 

transform near-infrared (FT-NIR) method was 

employed to identify infested maize kernels with an 

accuracy of 86.70% on the basis of distinct 

wavelengths ranging from 1466 to 2384 nm (Chu et 

al., 2014). This technique is used for detecting both 

internal and external pest infestations (Mishra et al., 

2018). The NIR system has been proven to be faster 

(< 1-min sample), and is easily adaptable for 

automated processes, offering a more advanced 

sampling protocol, especially for large flour 

quantities. The NIR technique is highly sensitive to 

the moisture content present in a sample (McClure, 

2003). This method is not applicable for detecting the 

minimum levels of infestation in large samples, and it 

is unable to differentiate between live and dead 

insects (Ahmad et al., 2018). 

 

Detection of insects by imaging methods 

X-ray imaging 

X-ray imaging is a non-destructive method for 

the detection and identification of stored grain 

insects. Dual-energy X-rays, in particular, have 

demonstrated efficacy in revealing concealed eggs of 

stored-product insect pests (Shah and Khan, 2014). 

X-ray methods are employed for identifying insect 

pests in diverse agricultural products, including 

grains, fruits, and vegetables. Soft X-ray imaging 

serves as an important component in the quality 
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monitoring of stored food grains, and enables the 

identification of insect infestations at various stages 

of development (Chuang et al., 2011). By providing 

a clear view of the internal structures of grains, this 

technique aids in assessing the extent of damage 

caused by insects without compromising the integrity 

of the samples. The X-ray method can identify 

various developmental stages, such as immature 

stages that feed inside the grain kernels when 

infestation is substantial (Karunakaran et al., 2003a). 

Both dead and live insects can be detected via this 

method (Rajendran, 2005). In cases of widespread 

infestation where adult insects are actively moving 

within a grain sample, it becomes possible to detect 

adults on the kernels (Table 1). 

An X‐ray unit was utilised for real-time 

imaging of wheat kernels by Sharifi and Mills (1971). 

The selection of kernels depends on the size of the 

larvae (lesser grain borers) present. The infected 

kernels were then categorised into three sizes: small, 

medium, and large. Small larvae covered 

approximately 10% of the kernels in 2‐D view, 

indicating the infant stages. The medium-stage 

larvae, corresponding to the immature stage (3rd and 

4th instars), occupied a space ranging from 10 to 25% 

of the kernel in 2-D view. Large-sized larvae, 

representing the late instar or pupal stage, cover more 

than 25% of the kernel in 2-D view (Sharifi and Mills, 

1971). Fornal et al. (2007) developed an algorithm to 

identify the eggs of S. granarius (L.) in wheat grain 

kernels via a soft X-ray imaging technique. 

The application of X-ray imaging in stored 

grain facilities enhances the ability to implement 

timely and targeted pest control measures. This 

proactive approach, enabled by accurate and non-

destructive imaging, helps mitigate the risks 

associated with insect infestations, ensuring the 

preservation of grain quality and minimising 

economic losses. 

 

Detection of insects via electromagnetic waves 

Microwave resonator 

This is a technique using a microwave device 

that is capable of identifying even a single insect in 

the sample. Microwave resonators operate on the 

basis of the principles of electromagnetic wave 

propagation and resonance. Resonance occurs when 

the frequency of an external electromagnetic field 

matches the natural frequency of the resonator. This 

leads to a significant increase in energy absorption, 

and efficient energy transfer between the external 

field and the resonator. This microwave resonator 

consists of a Peltier cell enabling temperature control, 

a planar microwave resonator that is connected to an 

external power source, and an insect cage. The 

measurement techniques include (a) transmission and 

reflection lines, (b) open-ended coaxial probes, and 

(c) free space (Alahnomi et al., 2021). This device is 

designed with high sensitivity. This enabled the 

characterisation of individual insect activity, 

specifically for pests such as T. castaneum or 

Cryptolestes ferrugineus. The detection of adult 

movements for a single or group of Oryzaephilus. 

surinamensis (L.), T. castaneum, and Lasioderma 

serricorne (Brahm) was performed via this technique. 

An existing challenge in this application is the 

potential uncertainties in sensor signals, which are 

influenced by various factors, such as location, insect 

size, and movement speed on the response (Reimer et 

al., 2018). This method is also employed in food 

processing to ensure food safety and quality. The 

microwave detection technique holds promise for 

utilisation in management programs and the non-

destructive identification of emerging insect 

infestations, which would be advantageous for both 

producers and consumers (Mankin, 2004). Another 

obstacle closely linked to the utilisation of the food 

industry is the moisture level, which affects the 

quality of products in diverse ways. Some products 

become susceptible to fungal, bacterial, and pest 

contamination, whereas others undergo improper 

processing due to unfavourable high moisture 

conditions. This ultimately diminishes the quality, 

effectiveness, and shelf life of food items, 

pharmaceuticals, and chemicals, posing a 

considerable risk of food poisoning. Additionally, the 

originality of food composition is widely recognised 

as a crucial factor (De los Reyes et al., 2007). 

A current challenge of this application is the 

possible ambiguities in sensor signals that result from 

the dependence of the response on insect size, 

location, and movement speed. One way to 

circumvent this is the use of an array of sensors that 

sink into grain bulks to increase the reliability of 

detection. The sensor could also be used to quickly 

test insects in grain samples pulled from a grain bulk. 

In addition to agriculture and food production, the 

material penetrating ability of the sensor would make 

it a useful tool for the detection of household pests 

such as termites, ants, or rodents (Reimer et al., 

2018). 
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Conductance-based detection of insects 

Conductive roller mill 

The conductive roller mill works on the 

principle of electrical conductance and compression 

force to detect infestations in stored food products. 

The existence of adult insects within the kernel leads 

to an increase in the kernel moisture content, 

facilitating the differentiation between healthy and 

infested kernels. This method is not effective for 

identifying immature stages or insects in grains with 

low moisture levels (Pearson and Brabec, 2007). The 

electrical conductive roller mill referred to as an 

"insect-o-graph" was developed by Pearson et al. 

(2003). Infested and uninfested grain samples were 

differentiated on the basis of the characterisation of 

the signals. 

A modified conductance mill has been used to 

detect the immature stages of lesser grain borer 

infestations in wheat and brown rice. Within 150 s, 

the modified conductance mill detected 97% large, 

83% medium, and 42% small lesser grain borer larvae 

in 500 g sample of wheat and brown rice. The 

detection period was greater in wheat than in brown 

rice (Brabec et al., 2012). 

An infestation of the maize weevil, S. zeamais 

was detected at various developmental stages within 

popcorn kernels via a conductive roller mill. They 

conducted tests with two mills, and reported that the 

slow-feeding mill successfully detected 91% of 

medium-sized larvae, 47% of small-sized larvae, and 

81% of pupae, whereas the faster mill detected 75% 

of pupae, 80% of medium-sized larvae, and 43% of 

small-sized larvae; this method is effective for 

identifying the immature stages of insect pests 

(Brabec et al., 2017). 

The infested and uninfested kernels were 

distinguished on the basis of the conductance and the 

system's received signal. The detection of grains 

infested with large larvae of R. dominica, with an 

accuracy of 80% in barley and wheat, has been 

reported. Barley seeds infested with medium-sized 

larvae were detected at a lower rate than were wheat 

seeds, i.e., 40% for barley and 65% for wheat. The 

feeding rate of barley grain samples was lower than 

that of wheat samples, and the resulting barley sample 

contained a maximum quantity of larger-sized 

particles (Brabec et al., 2023). 

Although this method is inexpensive, 

inspecting single grain kernels is time consuming. 

Kernels infested with insect eggs and young larvae 

may get undetected because of their low moisture 

content. Another disadvantage of this method is that 

it is not useful in detecting kernels with dead internal 

insects. The rate of insect detection in this method is 

very low compared with those of inspection by soft 

X-rays (Pearson et al., 2003). 

 

Detection of insects via antigens or proteins 

Enzyme-linked immuno-sorbent assay (ELISA) 

ELISA is a sensitive and specific method for 

detecting and quantifying insect infestations, and 

associated proteins or antigens in stored grains. It has 

wider application as a detection tool in quality 

inspections in the food industry, medicine, etc. (Sun 

et al., 2015). Its versatility, sensitivity, and ability to 

provide quantitative data make it an essential 

component of stored insect infestation detection. 

Regular monitoring via ELISA ensures timely 

intervention, and facilitates the development of 

sustainable practices for stored grain protection. 

ELISA provides a sensitive and specific method for 

detecting and quantifying the presence of specific 

insects and their associated proteins or antigens in 

stored grains. ELISA involves the use of antibodies 

that selectively bind to target proteins or antigens. An 

immunoassay method for detecting insect pest 

contamination in agricultural commodities was first 

suggested by Johnson et al. (1973). Double immune 

osmophoresis and immunodiffusion were developed 

for detecting S. granarius in wheat (Rotundo et al., 

2000). Rhyzopertha dominica eggs were detected in 

the wheat kernels, and myosin was quantified via the 

ELISA method, which is designed specifically for 

this protein. The degradation of myosin was most 

rapid within two weeks, with an approximately 58.4% 

reduction. The described method involves a sandwich 

ELISA employing monoclonal antibodies (MAbs) 

directed against species-specific antigens, and 

polyclonal antibodies (PAbs) generated against 

identical antigens, which are secondary enzyme-

conjugated antibodies, where ELISA has been 

demonstrated to be effective in identifying the 

percentage of infestation attributed to the granary 

weevil S. granarius in wheat with diverse insect 

population densities (Chen and Kitto, 1993). These 

findings suggest that Trogoderma granarium-specific 

ELISA can be used for the identification of other 

Trogoderma spp. Identification and scoring of several 

hundred insects is possible within a day due to its high 

accuracy. The myosin concentrations of R. dominica 

were measured via a commercial ELISA (Atui et al., 

2007). There has been a general agreement of data 
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obtained by immunoassays and the fragment count 

method, except at very low levels of infestation. 

Although the method is indirect, it is quantitative, 

reproducible, and relatively fast (Quinn et al., 1992). 

 

Advanced methods for detection of stored grain pests 

Acoustic detection 

Acoustic detection is a non-destructive method 

used in the detection of both internal and external 

feeders in grain masses. The movement and nibbling 

sounds of insects can be acoustically detected by 

amplification and filtering. These acoustic sensors 

can be used to detect either acoustic or mechanical 

waves. The characteristics of the material or item and 

any obstacles affect the acoustic wave as it travels 

through it (Mankin et al., 2021; Lutz and Coradi, 

2022). As a result, the velocity or amplitude of the 

acoustic wave is reduced, and the transducers 

transform these changes into digital or analogue 

signals (Figure 1). 

Typically, a piezoelectric substrate has been 

used as a sensor for the identification of hidden insect 

nibbling and crawling sounds within grain kernels 

after passing through the amplifier and filter chamber. 

The applications of acoustic devices have been 

limited by the targeted sounds from background 

sounds and by the limiting parameters, which include 

the sound-noise ratio, sensor sensitivity, and sensor 

range. The effectiveness of acoustic devices in 

identifying hidden insects relies on various elements, 

such as the type of sensor used and the range of 

frequency of the sensor, the size of the insect, the 

connection between the sensor and the substrate, the 

temperature, the type of insect detected, the 

developmental stage, the duration of the assessment, 

the size and behaviour of the insect, and the distance 

between the sensors and insects (Mankin et al., 2011). 

The crawling and feeding activities of stored-grain 

insect pests, viz., Stegobium paniceum (L.), S. oryzae, 

and T. castaneum were assessed separately via 

piezoelectric sensors, infrared sensors, and 

microphones in small storage. Acoustic and vibration 

sensors detect 3 - 10 milli-second signals from three 

test insects, and have reported that the impulses 

detected by such economical sensors can be used to 

detect targeted storage insects (Mankin et al., 2021). 

A low-cost acoustic insect detection method for S. 

oryzae incidence was detected at a population density 

of 1.9 adults/kg, and for T. castaneum, it was detected 

at 3.8 adults/kg in 2.6 kg bags at the laboratory level 

(Mankin et al., 2020). 

 

 
Figure 1. Illustration of acoustic sensor and signal processing system designed for detecting stored-grain 

insect pest infestation. 
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The use of modified sensors and software tools 

for signal processing has made it possible to be more 

responsive to technological advancements. Spectral 

and temporal pattern elements are also helpful in 

differentiating targeted sound and background noise. 

The sounds of insects are separated from background 

noise via common speech recognition techniques 

such as hidden Markov models and Gaussian mixture 

models (Mankin et al., 2009). Acoustic tools, along 

with physical monitoring and pitfall traps, can aid 

warehouse owners in locating incidences in the 

storage arena, assisting them in taking measures to 

reduce losses during storage (Njoroge et al., 2019). 

The impulse rate which is the number of 

impulses per unit time has effectively been used to 

identify infestations, distinguish species and life 

stages, and overcome the influence of noise. The 

burst can range from 50 to 200 impulses (Mankin, 

2011) and last from 3 to 30 ms (Mankin et al., 2011). 

Adult lesser grain borers, R. dominica, and red flour 

beetles, T. castaneum, produce 37 and 80 times more 

sound than their larvae do (Mankin et al., 2011). 

Larger amounts of impulses could be used as 

indicators of higher infestation and increased in 

number of insects. Background noise tends to be 

continuous or with isolated pulses, which can be 

filtered out by setting a threshold for the number of 

impulses per unit time (Mankin et al., 2021). 

The acoustic emission consulting AED 2010 L 

is a portable, battery-operated system with a 

piezoelectric sensor mounted on a metal probe that is 

inserted into a grain sample. It was able to detect even 

one or two insects per kg of wheat grain with 72 to 

100% accuracy, and was able to predict the 

population densities of the tested live samples, 

including the rice weevil, S. oryzae, the lesser grain 

borer, R. dominica, the confused flour beetle, T. 

confusum, the saw-toothed grain beetle, O. 

surinamensis, the rusty grain beetle, C. ferrugineus, 

the khapra beetle, T. granarium, and the cigarette 

beetle, L. serricorne, through chi-square tests and 

machine learning classifiers (Eliopoulos et al., 2015; 

2016). 

The acoustic location fixing insect detector 

(ALFID) system is designed with a vertical 

orientation, allowing grains to be loaded and 

unloaded by gravity. It utilises 16 piezoelectric 

acoustic sensors arranged in a linear configuration to 

detect the number of feeding larvae and pinpoint their 

location within the sample. The sensor signals are 

amplified by 80 dB, and processed through a 

bandpass filter ranging from 1,000 to 10,000 Hz. 

Amplitude threshold detection is used to determine 

the signal’s arrival time, whereas a detection order 

algorithm calculates the location. The system was 

tested with up to three rice weevil larvae, S. oryzae 

per kg of wheat, achieving a detection accuracy of 

64% with an 8% false positive rate. 

These methods lack realistic grain 

backgrounds, and fail to monitor granary surfaces 

comprehensively. The automated system combines 

YOLOv4 and a mobile vehicle with a camera used for 

pest detection, and achieves 97.55% accuracy. The 

system enables precise, labour-free pest monitoring, 

and early warning in grain storage (Chen et al., 2022). 

The crawling and feeding behaviour of bruchids, viz., 

C. maculatus and C. chinensis, were assessed by 

placing the acoustic detection probe in a sound-

insulated bin in chickpea and green gram. The sounds 

detected were screened and examined via sound 

analysis software. The amplitudes of C. chinensis in 

chickpea and green grams were measured at 79.32 

and 84.01 dB, respectively, for a 59 ms duration, 

whereas for a 68 ms duration, the amplitude of C. 

maculatus was 97.65 dB in chickpea, and 95.53 dB in 

green grams at the 300 mm omnidirectional detection 

range of the sensor (Banga et al., 2019). 

In sub-Saharan Africa, an acoustic device was 

developed for the detection of Prostephanus 

truncates and S. zeamais in maize (Kiobia et al., 

2015). The sensors could detect larval impulses up to 

a distance of 25 cm, and software devices were 

developed on the basis of observations and variations 

in the temporal and spectral patterns of insect noise 

correlated with variations in physiological activity. It 

is expected that acoustic detection technology will 

continue to advance, making automation easier and 

minimising the expense of detecting stored-product 

insects. In recent years, insect acoustic trapping has 

also been used as an advanced non-destructive 

detection technique. This could be because accurate 

estimations of infestation density require large 

numbers of samples, and result in greater deviations 

in the rates of sound generated by individual insects, 

especially in immature stages (Eliopoulos et al., 

2015; 2016; Njoroge et al., 2019; Mankin et al., 

2020). 

Machine learning (ML) algorithms have been 

applied to improve the accuracy of acoustic insect 

detection. Although raw acoustic data can be fed 
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directly into training algorithms, the data are often 

pre-processed to extract features such as Mel-

frequency cepstral coefficients (MFCCs), spectral 

centroid, spectral flatness, spectral roll-off, linear 

predictive cepstral coefficients (LPCCs), and line 

spectral frequencies (LSFs). The data can also be 

converted into spectrograms, two-dimensional 

graphical representations of the magnitude of the 

signal at various frequencies over time, which can be 

used with traditional image classification models 

(Kadyrov et al., 2024). ML requires large datasets to 

train and test models. The Animal Sound Archive, 

InsectSet32, InsectSet42, InsectSet66, and the 

Singing Insects of North America, all feature 

recordings of insects; however, they are not species 

commonly found infesting stored grains and 

products. The BugByte sound library is the only 

publicly available dataset of insect sounds with 

recordings of stored product pests’ movement and 

feeding in various materials (Mankin, 2019). 

Artificial neural networks (ANNs) are 

computer models of brain neuron linkage processes 

that combine weighted inputs from observational 

data, e.g., acoustic signal pulses, and produce a single 

binary output that learns its correct value from the 

observational inputs via backpropagation or other 

methods. Machine learning methods incorporate 

neural networks, including convolutional neural 

networks (CNNs), probabilistic neural networks 

(PNNs), perceptual learning prediction (PLP), 

decision trees and forests, hidden Markov models 

(HMMs), support vector machines (SVMs), Bayesian 

classifiers, and other methods to improve predictions 

automatically through experience with datasets where 

the target insect species have been independently 

identified (Romano et al., 2013). Deep learning is a 

machine learning method that incorporates multiple 

layers of neural networks, each of which extracts 

specific features or learned representations of input 

data (Jordan and Mitchell, 2015). 

One of the challenges of using acoustic sensors 

for detecting insects in stored products is the 

interference of external noise from the surrounding 

environment, such as factory machinery, vehicles, 

wind, and other sources. External noise can mask the 

low-intensity sounds produced by insect feeding and 

movement, which typically range from 20 to 80 dB 

SPL (sound pressure level) at frequencies below 10 

kHz. The acoustic detectors were shielded via a  

 

multi-layered enclosure that attenuated sounds by 70 

to 85 dB between 1 and 10 kHz. This method enables 

reliable detection of internally feeding larvae in grain 

samples at inspection facilities with high noise 

backgrounds, and it cannot detect dead insects in 

grain, as well as infestation, which cannot be detected 

at early larval stages (Mankin et al., 1996). Until now, 

however, commercial insect detection devices have 

not yet fully achieved versatility, ease of use, and 

cost-effectiveness of currently available cell phones, 

and have not rapidly supplanted pheromone or probe 

traps, sifting, or other insect pest detection methods 

in general use. The potential of increased scalability 

and increased automation nevertheless continues to 

drive interest from commercial suppliers of insect 

acoustic detection technology. 

 

Environmental sensing 

Environmental sensing is a crucial aspect of 

modern technology that involves the use of sensors 

and monitoring devices to gather data about the 

surrounding environment. These sensors are designed 

to detect and measure various physical, chemical, and 

biological parameters, providing valuable insights 

into environmental conditions. The major ecological 

factors to be considered for effective grain storage 

without quality deterioration are moisture content, 

carbon dioxide, temperature, and oxygen. 

Temperature, relative humidity, and moisture content 

play crucial roles in the growth and development of 

insects (Guru et al., 2022). These elements can 

influence the survival rates of both immature and 

adult insects, and other microorganisms found in 

stored grains. Temperature measurements in various 

storage units can be recorded via temperature cables, 

thermocouples, thermometers, and temperature 

sensors (Kaushik and Singhai, 2018). Temperature 

sensors are rapid, low cost, and can be used for 

precise temperature measurements. 

Detecting grain spoilage resulting from 

moulds, mites, and insects involves measuring the 

level of CO2 in the intergranular air. The CO2 

concentration levels fluctuate, and sensors can be 

used to observe these changes during the respiration 

of organisms. CO2 concentrations ranging between 

1,100 and 1,500 ppm signal the beginning of mould 

growth, whereas carbon dioxide concentrations 

exceeding 1,500 to 4,000 ppm indicate severe mould 

infection or infestation of stored grains by insects 

(Gonzales et al., 2009) (Table 2). 
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Table 2. List of sensors used for environmental sensing. 

S.no Sensor Sensor type Reference 

1. LM35 Temperature sensor Maier et al. (2006) 

2. DHT22, SHT21, SY-HS-220 
Temperature /  

RH sensor 

Maier et al. (2006);  

Singh and Fielke (2017) 

3. Metal oxide sensor (MOS), MQ7 Carbon dioxide sensor Neethirajan et al. (2009) 

4. LM35, SY-HS-220 Temperature / RH sensor Patil et al. (2023) 

5. ISO 6639- 3: 1986 Temperature / RH sensor Banga et al. (2020) 

6. 

DHT 22 (AM2302, Aosong 

(Guangzhou) Electronics Co., Ltd.) - 

300 mm omnidirectional 

Temperature / RH sensor Banga et al. (2019) 

7. 
SHT75 single module  

(Sensirion AG, Zurich, Switzerland) 
Temperature / RH sensor Uddin et al. (2006) 

8. ESP32 Temperature / RH sensor Talpur et al. (2021) 

9. 
PABA-Sensor  

(380 - 2400 ppm of CO2) 

Carbon dioxide sensor  

(2455 ppm) 
Neethirajan et al. (2010) 

10. MQ-135 Carbon dioxide sensor Kodali et al. (2020) 

11. DHT-11 Temperature/RH sensor Kodali et al. (2020) 

 

Olfactory-based method of detection 

Electronic nose (E-nose) 

Electronic nose (E-nose) technology is a 

sensory system that mimics the human olfactory 

system for the detection and identification of odours 

or volatile compounds. E-noses typically use an array 

of sensors with different sensitivities to various 

volatile compounds (Figure 2). This array helps 

capture a broader range of odours, enhancing the 

system's ability to differentiate between different 

insect pests or stages of infestation (Hussain et al., 

2019; Karakaya et al., 2020). The E-nose system 

relies on pattern recognition algorithms to analyse the 

data generated by the sensor array. Machine learning 

and statistical methods are commonly employed to 

train systems to recognise specific patterns associated 

with different insect pests or infestation levels (Wu et 

al., 2013). The E-nose system should be calibrated 

with the baseline odour profile of the stored grain 

without infestation. Stored-grain insect pests release 

specific volatile compounds during various life 

stages, such as mating, feeding, and egg laying. E-

noses are trained to recognise these unique chemical 

signatures, allowing for early detection of 

infestations. As the E-nose sensor array interacts with 

the stored grain environment, it produces a unique 

pattern or "smell print" that can be analysed to 

determine the presence and severity of insect pests. 

This helps in establishing a reference point and 

increases the accuracy of pest detection by identifying 

 

deviations from the normal odour. Conducting 

polymers (CPs) and metal oxide semiconductors 

(MOSs) are the most commonly used sensors, but 

alternative technologies such as metal oxide 

semiconductor field-effect transistors (MOSFETs), 

carbon dioxide (CO2), optical fibre live cells (OF-

LCs), carbon black composites (CBCs), and surface 

acoustic waves (SAWs) have also been used (Zheng 

and Zhang, 2022). E-nose-based detection of R. 

dominica infestation in stored food grains was 

performed with 18 metal oxide E-noses. They 

reported that the E-nose is applicable for ensuring the 

high precision of artificial neural networks in 

ensuring the data analysis of data without any loss of 

information (Srivastava et al., 2019). 

E-nose technology can be integrated with other 

monitoring systems, such as temperature and 

humidity sensors. Combining multiple data sources 

enhances the overall understanding of the stored grain 

environment and provides a more comprehensive pest 

management strategy. The accurate, rapid and non-

destructive detection characteristics of E-noses have 

great potential for application in the field of grain 

storage. The limitations of this method include its 

high cost and high specificity for some groups of 

insect species (Srivastava et al., 2019). 

 

Solid-phase microextraction (SPME) method 

Solid-phase microextraction (SPME) is a 

widely used innovative and efficient detection 
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Figure 2. Schematic representation of E-nose setup. 

 

technique gaining prominence in the monitoring and 

control of stored-grain insect pests. Solid-phase 

microextraction (SPME) is a simple, sensitive, rapid, 

and solvent-free technique for the extraction of 

analytes from gaseous, liquid, and solid samples, and 

is among the leading microextraction methods. The 

application of SPME in sample preparation has been 

increasing continuously over the last decade. It is 

most often used as an automated fibre injection 

system coupled with chromatographic separation 

modules for the extraction of volatile and semi 

volatile organic compounds, and allows for the trace 

analysis of compounds in complex matrices. The 

SPME process is composed of two basic steps: (i) 

partitioning of analytes between the extraction phase 

and the sample matrix, and (ii) desorption of 

concentrated extracts into an analytical instrument 

(Adahchour et al., 2002). SPME offers a sensitive and 

non-invasive method for the identification and 

quantification of volatile organic compounds (VOCs) 

emitted by these pests, enabling early detection and 

intervention. SPME involves the extraction of target 

compounds from the headspace of a sample via a 

coated fibre that selectively adsorbs volatile analytes. 

The fibre is then desorbed in the injection port of a 

gas chromatograph (GC), allowing for the separation 

and identification of the compounds of interest. 

SPME coupled with gas chromatography-mass 

spectrometry (GC-MS) facilitates the identification 

and differentiation of various stored-grain insect pests 

(Cai et al., 2022). A relatively small number of R. 

dominica infestations in wheat were detected via 

SPME coupled with GC-MS and GC-FID (Niu et al., 

2016). Head space SPME coupled with GC-MS was 

used to determine the correlation between insect 

infestation and stored grain quality in T. castaneum 

and C. ferrugineus (Senthilkumar et al., 2012). By 

using the head space SPME method combined with 

the GC-MS technique, the characterisation of 

semiochemicals (SCSs) was adapted for C. 

maculatus, S. oryzae, and T. castaneum. SPME is 

environmentally friendly as it minimises the need for 

chemical solvents and reduces the overall 

environmental impact of pest monitoring (Lokesh et 

al., 2023). SPME was used to collect volatile organic 

compounds (VOCs) released by T. castaneum. The 

major components, methyl-1,4-benzoquinone 

(MBQ), ethyl-1,4-benzoquinone (EBQ), and 1-

pentadecene (C15:1) were analysed via capillary gas 

chromatography-mass spectrometry (CGC-MS). 
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CAR/PDMS fibres captured the highest quinone 

levels (∼75%), outperforming the other fibres. The 

SPME-CGC method is effective for detecting T. 

castaneum volatiles, aiding in stored product 

infestation monitoring. 

The SPME technique appears to be easy to 

perform but is sensitive to the time and temperature 

of extraction. With its application in the detection of 

insect infestations, further development is needed to 

improve the sensitivity of the technique to detect 

insects that produce relatively few pheromones 

(Laopongsit et al., 2014) or other volatiles, especially 

at very low concentrations. SPME has several 

advantages over traditional extraction methods. It is 

not only a rapid, simple, and solvent-free method, but 

also sensitive and provides linear results for a wide 

range of concentrations and analytes. In addition to 

the low concentrations of analytes, quantitative or 

semiquantitative data are provided, and losses that 

can occur during the extraction, concentration, and 

clean-up steps of traditional sample procedures are 

mostly avoidable (Nerín et al., 2009). 

One of the main drawbacks of SPME 

techniques is the limited number of commercially 

available stationary phases (fibre materials) that only 

roughly cover the scale of polarity of target analytes. 

In particular, the extraction of polar analytes from 

samples with a polar matrix poses a problem (Souza-

Silva and Pawliszyn, 2015). Other challenges are the 

recommended operating temperature (240 - 280°C), 

instability and swelling in organic solvents, breakage 

of the fibre, stripping of coatings, bending of the 

needle, and cost, as well as the limited lifetime of the 

fibre (Namieśnik et al., 2000; Nerín et al., 2009). 

Furthermore, sample carry-over may occur, and high-

molecular-weight compounds cannot be analysed in 

combination with GCs (Namieśnik et al., 2000). In 

certain cases, low extraction efficiencies are reported, 

particularly in the case of highly volatile, polar, or 

thermally unstable analytes. 

 

Detection of insects via imaging method 

Machine vision 

Machine vision systems can detect the 

presence of insect infestations at an early stage, even 

before they cause visual damage. Early detection 

allows prompt intervention and prevention of 

infestations. Continuous monitoring of storage areas 

via cameras and sensors enables real-time 

surveillance. Machine vision algorithms analyse 

 

images to identify potential signs of insect infestation 

or unusual behaviour (Park et al., 2023). Machine 

vision systems can be trained to recognise different 

insect species on the basis of their visual 

characteristics. By analysing images of stored 

products, machine vision can assess the damage 

caused by insects. Computerised image analysis has 

been shown to have great potential for detecting and 

identifying various non-grain particles and insects in 

wheat. A machine vision system for detecting insects 

in grains consists of a high-speed integrated machine 

vision software package with a monochrome charge-

coupled device (CCD) camera and a personal 

computer. Machine vision aids in assessing the risk of 

infestation on the basis of factors such as temperature, 

humidity, and the type of stored product (Vithu and 

Moses, 2016), and longwave infrared (LWIR) 

hyperspectral imaging is used to examine damaged 

wheat kernels. The wheat kernels affected by the 

rusty grain beetle, C. ferrugineus, rice weevil, S. 

oryzae, red flour beetle, T. castaneum, and lesser 

grain borer, R. dominica, were scanned at 

wavelengths ranging between 1000 and 1600 nm with 

greater than 90% accuracy via structural and colour 

information (Table 3). The insects and body parts in 

the bulk wheat samples were detected via pattern 

recognition and multivariate analysis, and more than 

90% accuracy was obtained (Zayas and Flinn, 1998). 

An insect monitoring system using RGB 

cameras and YOLO deep-learning models was used 

to detect and identify six stored product insect species 

in various environments. A dataset of 2,630 images 

with 14,509 labelled insects were used to train six 

YOLO variants, which achieved high detection 

accuracy (> 76%) and fast inference speeds (12 - 36 

ms). The lightweight YOLOv8l model was 

successfully deployed on mobile devices, offering a 

cost-effective, accurate, and scalable solution for 

real-time insect detection in stored product facilities 

(Badgujar et al., 2023). 

Different algorithms and improved systems 

have been developed to achieve high throughput, 

reduce instrument and computational costs, allow 

easy data access and real-time monitoring, and cover 

different insect pest species (Lima et al., 2020). A 

deep neural network was used to detect and identify 

six species of stored grain insects that were blended 

with grain and dockage materials (Shen et al., 2018). 

Although they achieved a high mean average 

precision (mAP) of 88%, they used different models 
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for different insects, and encountered issues such as 

one species being classified as two. Another insect 

detection system built on a deep CNN focused on 

different insect sizes, and obtained mAPs of up to 

95%. However, only one insect species at a time is 

detected. Some benefits of machine vision include (a) 

the ability to analyse images and videos much faster 

and with higher accuracy than humans do, which 

makes it suitable for high-speed quality control, 

inspection, and sorting tasks; (b) the ability to 

perform tasks consistently without errors or fatigue, 

ensuring consistent results; (c) the ability to analyse 

images and videos without physical contact, making 

it suitable for inspecting hazardous or fragile 

materials; (d) the flexibility of programming machine 

vision systems to analyse a wide variety of images 

and videos, enabling them to be used for various 

applications; and (e) the potential to reduce labour 

costs and enhance productivity, making it a cost-

effective option for many applications. However, the 

use of machine vision also has several drawbacks, 

which include (a) the complexity of designing and 

implementing the systems, which require expertise in 

both hardware and software; (b) the cost of 

developing and implementing the systems, especially 

for specialised applications; (c) the systems’ 

sensitivity to lighting conditions, which can affect the 

accuracy and consistency of their results; (d) the 

limited understanding of context and inability to 

make judgments on the basis of experience or 

intuition of systems using machine vision; and (e) the 

limited applicability of the systems, especially for 

applications that require complex decision-making 

skills beyond image analysis. 

The application of machine vision in storage 

entomology involves leveraging visual data and 

advanced algorithms to monitor, detect, and manage 

insect-related risks in storage environments. A major 

obstacle to the development of commercially useful 

machine vision systems for insect detection in grain 

is the limited rate of sample throughput. Simple, fast, 

and reliable algorithms are needed to inspect a 

statistically significant portion of a grain sample in a 

short term. Furthermore, device complexity, 

particularly in terms of camera type, computer 

specifications, and sample delivery system must be 

minimised to make this approach cost effective. 

Another disadvantage is that it can detect only 

external insects in grain bulks, whereas NIR 

spectroscopy and X-ray methods can detect internal 

insects (Neethirajan et al., 2010). 

Thermal imaging 

Thermal imaging technology has emerged as a 

valuable tool in various fields, including agriculture 

and pest management. This non-invasive and non-

destructive technology uses infrared radiation to 

detect temperature differences on surfaces, enabling 

the identification of potential pest infestations (Al-

Doski et al., 2016). The thermal imaging technique 

holds significant promise in identifying various 

postembryonic stages of insects through temperature 

variations and heat generated through insect 

respiration (Nanje Gowda and Alagusundaram, 

2013). 

Thermal imaging in insects is based on the 

principle of detecting infrared radiation emitted by 

the insect's body. Infrared radiation constitutes a form 

of electromagnetic radiation characterised by 

wavelengths longer than those of visible light. The 

principle of thermal imaging in insects involves the 

following key aspects: Infrared radiation emission 

and objects that possess a temperature higher than 

absolute zero emit infrared radiation. The amount of 

radiation emitted is directly related to the insect's 

temperature. In thermal imaging, sensors are used to 

detect this emitted infrared radiation. With respect to 

temperature variation, insects have different body 

temperatures depending on their activity, 

environmental conditions, and physiological state 

(Lazzari, 2019). 

For example, a flying insect may have a higher 

body temperature due to increased muscle activity. 

Thermal imaging allows visualisation of these 

temperature variations. Thermal cameras or sensors 

are used to capture the infrared radiation emitted by 

insects. These sensors are designed to detect and 

convert infrared radiation into visible images or data 

that represent temperature differences. The resulting 

thermal image provides a temperature map of the 

insect and its surroundings. In thermal imaging, 

diverse hues or tones are frequently employed to 

depict different temperature gradients. Regions with 

higher temperatures are depicted with brighter or 

warmer colours, such as red or yellow, whereas 

regions with lower temperatures are depicted with 

darker or cooler colours, such as blue or purple. This 

colour mapping helps in interpreting the thermal 

patterns of insects (Nguyen et al., 2021). Wheat 

kernels infested by the rusty beetle C. ferrugineus 

were detected via a thermal camera 50, with an 

accuracy of 83.5% (Manickavasagan et al., 2008). 

The egg, larval, and pupal stages of the pulse beetle 
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C. maculatus were identified via a thermal camera 

with an accuracy of 83% (Chelladurai et al., 2012). 

Thermal imaging in insects relies on detecting 

infrared radiation emitted by the insect's body to 

create a visual representation of temperature 

variations. This technology provides valuable 

insights into insect biology, behaviour, and 

environmental interactions. The integration of 

thermal imaging into pest control strategies is likely 

to become even more prevalent, contributing to a 

greener and more efficient approach to pest 

management. Thermal imaging is an expensive 

system with a cost-prohibitive system and camera 

price; thus, its application is limited to only laboratory 

settings and high-value target analyses. 

 

Conclusion 

 

The detection of stored-grain insect pests is 

critical for safeguarding global food security, and 

preserving economic stability in the agricultural and 

food industries. The present review underscores the 

importance of advanced and improved methods for 

the early detection of stored-grain pests. While these 

techniques have demonstrated their potentials to 

mitigate postharvest losses and ensure food security, 

there is room for further research to enhance their 

efficacy. Future studies should focus on integration of 

advanced technologies for the development of low-

cost, portable, and user-friendly devices; 

incorporating AI, machine learning, and IoT 

capabilities which can enhance real-time pest 

detection and decision-making processes, field 

validation, and scalability for comprehensive field 

studies across diverse geographical and 

environmental conditions, which are required to 

validate the performance of these techniques. 

Emphasis should also be placed on scalability and 

accessibility for smallholder farmers and 

sustainability, and environmental impact for future 

research should focus on creating eco-friendly 

detection methods with minimal environmental 

footprint, ensuring compliance with global 

sustainability goals, and data standardisation and 

sharing to establish the standardised protocols for 

data collection, analysis, and sharing across platforms 

which can enable collaborative research and improve 

the reliability of pest detection systems. Public-

private partnerships to encourage the collaboration 

between academia, industry, and policymakers can 

accelerate the adoption of innovative pest detection 

technologies and drive investment in this critical area. 

By addressing these areas, future research can 

overcome existing limitations, foster widespread 

adoption of advanced pest detection methods, and 

significantly reduce postharvest losses, thereby 

contributing to global food security. 
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